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Precession of Orbiting Gyroscope in Higher-Order
Gravitational Field Caused by Rotating Body
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The metric for a spinning massive object with any shape and composition is found
by the use of linearized higher-order theory of gravitation. The geodesic and the Lense–
Thirring precessions for an orbiting gyroscope in a general weak higher-order gravi-
tational field are considered. The influences of the additional Yukawa forces included
in the linearized higher-order gravitation on the precessions are investigated.
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1. INTRODUCTION

The precession for an orbiting gyroscope is an important phenomenon in
astrophysics, which may be used to test the predictions of general relativity and
other gravitational theories. Einstein’s general theory of relativity predicts that a
gyroscope circling the Earth in a low circular polar orbit with altitude 650 km will
precess about 6.6 arcsec/year in the orbital plane (geodetic precession) and about
42 milliarcsec/year perpendicular to the orbital plane (Lense–Thirring precession)
(Misneret al., 1973; Ohanian and Ruffini, 1994; Will, 1993).

Since the times of Eddington and Weyl, higher-order gravitational theories
have been discussed by several generations of scientists (Havas, 1977), and applied
to quantum gravity (Stelle, 1997), early cosmology (Barrow and Ottewill, 1983),
pure gravitational inflationary model for the universe (Mijicet al., 1986), elimi-
nating the singularities in gravity (Treder, 1975), explaining the dark matter in the
universe (Mannheim and Kazanas, 1989, 1994), and so on. Eddington (1924) and
Weyl (1952) pointed out that higher-order theories of gravitation were observa-
tionally equivalent to Einstein’s because they included as one of their solutions the
(exterior) Schwarzchild metric. It was noted by Pauli (1921) and Buchdahl (1948)
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that every vacuum solution (including the Schwarzchild solution) of general rela-
tivity is also a solution of any fourth-order theory.

In this paper, we consider the movement of an orbiting gyroscope in lin-
earized higher-order gravitational field due to a rotating object. We first find the
general solution of linearized field equation for higher-order gravitational theory,
and the metric for a spinning body with any shape and composition. Next, we de-
rive the precession equations for an orbiting gyroscope, give the geodesic and the
Lense–Thirring precessions for an orbiting gyroscope, and discuss the influences
of the additional forces of Yukawa type in higher-order gravity on the precessions.
Finally, we investigate the precessions of an orbiting gyroscope in Earth’s higher-
order gravitational field and in higher-order gravitational field due to a neutron star,
and compare the precessions predicted by higher-order theory to that predicted by
general relativity.

2. GENERAL SOLUTION FOR THE LINEARIZED
HIGHER-DERIVATIVE FIELD EQUATIONS OF GRAVITY

A general action for higher-order gravitation may be written as

S=
∫

d4x[
√−g(R+ aR2+ bRµνRµν)− kLm] (2.1)

wherek is Einstein’s constant withk = 8πG/c4, a andb are two new parameters,
Lm is the matter Lagrangian,Rµν is the Ricci tensor, andR= gµνRµν .

The variation of the action (2.1) with respect to the metricgµν yields the
higher-derivative field equations

Gµν = G(E)
µν + aG(1)

µν − bG(2)
µν = kTµν (2.2)

where

G(E)
µν = Rµν − 1

2
gµνR

G(1)
µν = 2R;µ;ν − 2gµνR;σ

;σ + 2RRµν − 1

2
gµνR2

G(2)
µν = gµνRσρ;σ ;ρ + gσρ(Rµν;σ ;ρ − Rµσ ;ν;ρ − Rνσ ;µ;ρ)

− 2Rµσ Rσν +
1

2
gµνRσρRσρ

Tµν is the energy–momentum tensor of the sources of the gravitational field. A
semicolon denotes covariant differentiation. To obtain the linear approximation,
i.e., the linear equations in the components of the metric tensorgµν , we first drop
the quadratic terms inRandRµν , as well as 2R Rµν in Eq. (2.2). As a consequence,
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Eq. (2.2) reduces to(
Rµν − 1

2
gµνR

)
+ 2a

(
R;µ;ν − 2gµνR;σ

;σ

)− b
(
R;σ
µν;σ + gµνRσρ;σ ;ρ

− R;σ
µσ ;ν − R;σ

νσ ;µ

) = kTµν (2.3)

The gravitational field is supposed to be weak. So we put

gµν = ηµν + hµν (2.4)

whereηµν = diag(1,−1,−1,−1) is the flat space-time metric andhµν character-
izes the contribution to the metric because of the material fields.

Neglecting terms of orderh2, h3, . . . , and denoting thed′ Alembertian oper-
atorηαβ∂α∂β by h, we rewrite Eq. (2.3) as

(1− b h)

(
Rµν − 1

2
ηηνR

)
− (2a+ b)(ηµν h R− R,µν) = kTµν (2.5)

In these equations as well as in those that follow,Rµν andR must be replaced by
their respective first-order expressions.

Rµν = −1

2
h hµν + 1

2

(
γ ρµ,νρ + γ ρν,µρ

)
(2.6)

R = −1

2
h h+ γ µν,µν (2.7)

Here, the comma used as an index denotes partial differentiation, indices are raised
(lowered) usingηµν(ηµν), and the quantitiesγµν are defined by

γµν = hµν − 1

2
ηµνh (2.8)

whereh = ηµνhµν . Note, however, that we have the identitiesRνµ,ν = 1
2 R,µ in the

case of the linear field approximation, which allows us to conclude that[
(1− b h)

(
Rµν − 1

2
ηµνR

)
− (2a+ b)(ηµν h R− R,µν)

]
,ν

= 0 (2.9)

Therefore the linearized Eq. (2.5) implies

Tµν
,ν = 0 (2.10)

Equation (2.10) is identically the energy-momentum laws of the special theory of
relativity, which imply the special relativistic equations of motion (which contain
no gravitational interactions)

Contracting Eq. (2.5) byηµν and puttingT = ηαβTαβ yield

(2a+ b) h R= −1

3
kT − 1

3
(1− b h)R (2.11)
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Substituting Eq. (2.11) into (2.5) and taking Eq. (2.6) into account, we can rewrite
the linearized field equations in the equivalent form

(1− b h)

(
h hµν + 1

3
ηµνR

)
− (0µ,ν + 0ν,µ) = −2k

(
Tµν − 1

3
ηµνT

)
(2.12)

where

0µ = (1− b h)γ νµ,ν + (2a+ b)R,µ ≡ 0µ(hαβ) (2.13)

The Teyssandier gauge is defined by the subsidiary condition0µ = 0 on the
potentials (Teyssandier, 1989). Let us then show in which way this gauge can be
realized initially assuming0µ 6= 0. Indeed, lethµν be a solution of Eq. (2.12).
Under an arbitrary infinitesimal coordinate transformationxµ→ x̄µ = xµ +3µ,
where3µ is an infinitesimal vector field,hµν transforms intoh̄µν(x) = hµν −
3µ,ν −3ν,µ, which is also a solution of Eq. (2.12) sinceR(hαβ) transforms into
R(h̄αβ) = R(hαβ) and0µ(hαβ) transforms into

0̄µ(h̄αβ) = 0µ(hαβ)− (1− b h) h 3µ 6= 0ν(hαβ)
∂xν

∂ x̄µ

The Teyssandier gauge for the vanishing of0̄µ can now be realized by demand-
ing that0µ = (1− b h) h3µ. Thus, the problem of solving the linearized field
equations of higher-derivative gravity is completely equivalent to that of solving
the system of equations as follows:

(1− b h)

(
h hµν + 1

3
ηµνR

)
= −2k

(
Tµν − 1

3
ηµνT

)
(2.14)

Now, we define the quantitiesψµν by

ψµν = − 1

λ2
1

(
h hµν + 1

3
Rηµν

)
(2.15)

where we have assumed thatλ2
1 = −b−1. It is easily seen from Eqs. (2.14) and

(2.15) that theψµν satisfies the equations(
h+ λ2

1

)
ψµν = 2k

(
Tµν − 1

3
ηµνT

)
(2.16)

Eliminating the term ofλ2
1ψµν in Eq. (2.16) by using Eq. (2.15) yields

h (hµν − ψµν)+ 1

3
Rηµν = −2k

(
Tµν − 1

3
ηµνT

)
(2.17)

Equation (2.11) may be rewritten as(
h+ λ2

0

)
φ = 1

3
kT (2.18)



P1: GVG

International Journal of Theoretical Physics [ijtp] pp543-ijtp-376837 July 15, 2002 18:52 Style file version May 30th, 2002

Precession of Orbiting Gyroscope in Higher-Order Gravitational Field 1381

where we have assumed thatλ2
0 = 1/2(3a+ b) and

φ = R

3λ2
0

(2.19)

Eliminating the factorλ2
0φ by combining Eqs. (2.18) with (2.19), we obtain

R= −3 h φ − kT (2.20)

Substituting Eq. (2.20) into (2.17), we have

h(hµν − ψµν − φηµν) = −2k

(
Tµν − 1

2
ηµνT

)
(2.21)

On the other hand, the linearized field equations for Einstein’s gravitation in
the harmonic gaugeγ (E)ν

µ,ν = 0, whereγ (E)
µν = h(E)

µν − 1
2ηµνh

(E), are

h h(E)
µν = −2k

(
Tµν − 1

2
ηµνT

)
(2.22)

Thus, comparing Eq. (2.21) with Eq. (2.22), we may say that ifλ0 6= 0 andλ1 6= 0,
the general solutions of the linearized field equations for higher-derivative gravity
in the Teyssandier gauge are given by

hµν = h(E)
µν + ψµν + φηµν (2.23)

whereh(E)
µν is a solution of Eq. (2.22), which describes a massless tensor field;ψµν

a solution of Eq. (2.16), which describes a massive tensor field;φ a solution of
Eq. (2.18), which describes a massive scalar field. It is worth mentioning thatλ0

andλ1 can be real or imaginary according to the signs ofb and 3a+ b. In next
discussion, we will assume thatλ2

1 > 0 (b < 0) andλ2
0 > 0 (3a+ b > 0), which

corresponds to the absence of tachyone (both positive and negative energy) in the
dynamical field (Accioly and Azeredo, 2000), to assure asymptotic agreement of
the theory with Newton’s law.

3. METRIC OF ROTATING BODY

For a time-independent system, or a system which changes so slowly that
retardation effects may be ignored, the solutions of Eqs. (2.22), (2.16), and (2.18)
are as follows respectively:

h(E)
µν = −

k

2π

∫
Tµν(Er ′)− ηµνT(Er ′)/2

|Er − Er ′| d3Er ′ (3.1)

ψµν = k

2π

∫
Tµν(Er ′)− ηµνT(Er ′)/3

|Er − Er ′| e−λ1|Er−Er ′| d3Er ′ (3.2)
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φ = − k

12π

∫
T(Er ′)
|Er − Er ′| e−λ0|Er−Er ′| d3Er ′ (3.3)

If we suppose the body producing the metric field rotates stably with respect to its
center and the pressure is negligible, the energy-momentum tensor reduces to

Tµν = c2ρ(Er )uµuν (3.4)

implying T = c2ρ(Er ), where uµ is the four-velocity andρ(Er ) is the time-
independent matter density measured in the frame rotating with body.

Introducing the series expansions

1

|Er − Er ′| =
1

r
+ 1

r 3

3∑
i=1

xi x′i + · · ·

1

|Er − Er ′| e−λ|Er−Er
′| = e−λr

(
1

r
+ 1+ λr

r 3

3∑
i=1

xi x′i + · · ·
)

and the energy-momentum tensor from Eq. (3.4) into (3.1), (3.2), and (3.3), choos-
ing the mass center of the body as the origin of coordinates, assuming that the
distancer to a field point from the origin of coordinates is larger than the distance
r ′ to a point in the source from that, and then calculating the integrations, we have,
in the case of the dipole approximation

h(E)
00 = h(E)

i i = −
2GM

c2r
, h(E)

i 0 =
2G

c3r 3
(Er × EJ)i (3.5)

ψ00 = 2ψi i = 8GM

3c2r
e−λ1r , ψi 0 = − 2G

c3r 3
(1+ λ1r )(Er × EJ)i e−λ1r (3.6)

φ = −2GM

3c2r
e−λ0r (3.7)

where the Latin indices run from 1 to 3 andEJ is the angular momentum of the
rotating system defined by

EJ =
∫
ρ(Er ′)(Er ′ × EV)d3Er ′ (3.8)

We substitute Eqs. (3.5)–(3.7) into (2.23), obtaining

h00 = 2

c2
8, hi 0 = 1

c3
Ai , hi j = 2

c2
χηi j (3.9)

where

8 = −GM

r

(
1+ 1

3
e−λ0r − 4

3
e−λ1r

)
(3.10)
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Ai = 2G

r 3
[1− (1+ λ1r )e−λ1r ](Er × EJ)i (3.11)

χ = GM

r

(
1− 1

3
e−λ0r − 2

3
e−λ1r

)
(3.12)

Here8 andχ are two metric potentials, which are same as the results found by
Teyssandier (1989) and Accioly (2000) in the case of the matter system being
stationary.8 denotes the modified Newton’s gravitational potential (the gravito-
electric field) andEA = (A1, A2, A3) is referred to as a gravitational vector potential
(the gravito–magnetic field) in the framework of linearized higher-order theory of
gravitation.

In summary, we may write the (Lense–Thirring) line element as

ds2 =
(

1+ 28

c2

)
c2 dt2+ 2

c2
EA · dEr dt −

(
1+ 2χ

c2

)
dEr 2 (3.13)

which is valid to first order in field intensity and source velocity, and will serve as
a basis for calculating the gyroscope precession.

4. ORBITING GYROSCOPE PRECESSION

An orbiting gyroscope has its spin axis paralled-displaced in accord with the
metric (3.13). The paralled-displacement equation for the gyro spinSα is

dSα

ds
+ 0αµνSµ

dxν

ds
= 0 (4.1)

where0αµν , the Christoffel symbol of the second kind, is defined by

0αµν =
1

2
gαβ(gµβ,ν + gνβ,µ − gµν,β) (4.2)

The space components of Eq. (4.1) are

dSi

ds
+ 0i

µνSµ
dxν

ds
= 0 (4.3)

Substituting the metric given from Eq. (3.13) into (4.2), to lowest order in the
potentials the Christoffel symbols are

00
0i =

1

c2
8,i , 0i

00 =
1

c2
8,i , 0i

j 0 =
1

2c3
(Aj ,i − Ai , j ),

(4.4)
0i

jk =
1

c2
(χ,i η jk − χ, j ηik − χ,kηi j )

Since the gyro spin four-vector is perpendicular to the velocity four-vector, i.e.,
Sµuµ = 0, which is equivalent to that the gyro spin has no zero component in its rest
frame (Adler and Silbergleit, 2000), the zero component in another frame is easily
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obtained, and to first order in the satellite velocityEυ it is given byS0 = ES · Eυ/c.
Substitution of the Christoffel symbols given by Eq. (4.4) into the spin equation
of motion (4.3) gives

dSi

dt
+ 1

c2
[( ES · Eυ)8,i + (Eυ · ∇χ )Si + (S · ∇χ )υ i − ( ES · Eυ)χ,i ]

+ 1

2c2
(Aj ,i − Ai , j )S

j = 0 (4.5)

Breaking the drift rate into two parts, the geodetic drift rate due to the metric po-
tential8 andχ , and the Lense–Thirring precession rate due to the vector potential
EA, and then separating also symmetric and antisymmetric parts of the geodesic
effect, we arrive at, in a three-dimensional vector notation

ĖS= ĖSG + ĖSLT (4.6)

with

ĖSLT = EÄLT × ES, EÄLT = 1

2c2
∇ × EA (4.7)

and

ĖSG = EÄG × ES+ 1

2c2
[( ES · Eυ)∇8+ ( ES · ∇8)Eυ] + 1

c2
(Eυ · ∇χ ) ES (4.8)

EÄG = 1

2c2
[∇(8− 2χ )] × Eυ (4.9)

where EÄLT and EÄG are the instantaneous values of the Lense–Thirring and the
geodesic precessions, respectively. SinceEÄLT is the curl of the gravitational vector
potential the Lense–Thirring precession rate is the analog of the magnetic field in
magnetostatics theory. The effects of the second and third terms to the right of
Eq. (4.8) almost vanish when averaged over any reasonable satellite orbit. To
see this, using Newton’s law in the form∇8 = −Ėυ and taking account of that
χ < −8, we may write

1

c2
|〈Eυ · ∇χ〉 ES| < 1

c2
|−〈Eυ · ∇8〉 ES|

= 1

c2

∣∣∣∣〈Eυ · dEυdt

〉
ES
∣∣∣∣ = 1

2c2

∣∣∣∣∣
〈

dEυ2

dt

〉
ES
∣∣∣∣∣ =

∣∣∣∣∣ ∇ Eυ2

2c2T
ES
∣∣∣∣∣ (4.10)

where1Eυ2 is the change in the velocity squared in total timeT , and it is assumed
that the drift rate is small. In reality, if the orbit is periodic, this quantity will be
zero, and for a nearly periodic orbit it will be very small.
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In a similar way to above analysis, we have

1

2c2
|〈( ES · Eυ)∇8+ (S · ∇8)Eυ〉 j | =

∣∣∣∣−1(υ iυ j )

2c2T
ESi

∣∣∣∣ (4.11)

This quantity is zero for a periodic orbit and very small for a nearly periodic orbit.
In summary, the average precession rate of the gyro spin is

〈 ĖS〉 = 〈 ĖSG〉 + 〈 ĖSLT 〉, 〈 ĖSG〉 = 〈 EÄG〉 × ES,
(4.12)

〈 ĖSLT 〉 = 〈 EÄLT 〉 × ES
where the values of the Lense–Thirring and the geodesic precessions are respec-
tively given by Eqs. (4.7), (4.8), and (4.9).

5. DISCUSSION AND CONCLUSION

We found the metric due to a rotating body, using linearized higher-order field
equations of gravitation, and derived the precession equation for an orbiting gyro-
scope in the rotary higher-order gravitational field. In this section, we discuss the
effects of the Yukawa potentials included in linearized higher-order gravitational
field on the precessions. Substitution of Eqs. (3.10), (3.11), and (3.12) into (4.7)
and (4.9) gives.

EÄLT = EÄ(E)
LT + EÄ

(A)
LT , EÄG = EÄ(E)

G + EÄ
(A)
G (5.1)

with

EÄ(E)
LT = −

G

c2r 5
[3( EJ · Er )Er − r 2 EJ] (5.2)

EÄ(A)
LT =

G

c2r 5

[(
3+ 3λ1r + λ2

1r
2
)
( EJ · Er )Er − (1+ λ1r + λ2

1r
2
)
r 2 EJ]e−λ1r (5.3)

EÄ(E)
G =

GM

2c2r 3
(Er × Eυ) (5.4)

EÄ(A)
G = −

GM

6c2r 3
[(1+ λ0r )e−λ0r − 8(1+ λ1r )e−λ1r ](Er × Eυ) (5.5)

where EÄ(E)
LT and EÄ(E)

G are respectively the Lense–Thirring and the geodesic pre-
cessions of an orbiting gyroscope given by general relativity,EÄ(A)

LT and EÄ(A)
G are

respectively the Lense–Thirring and the geodesic effects due to the additional
forces of the Yukawa type in linearized higher-order gravity.

Suppose a satellite which contains a set of gyroscopes intended to test the
predictions of gravitational theories will be circling the Earth on an orbit with
altitudeh = 650 km, which is described byr = r0+ h, wherer0 expresses the
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Earth radius. For simplicity, we assume further the orbital plane is perpendicular
to EJ. Comparing the precession effects of the Yukawa force and general relativity,
from Eqs. (5.2) to (5.5) we arrive at

Ä
(A)
LT

Ä
(E)
LT

=
∣∣ EÄ(A)

LT

∣∣∣∣ EÄ(E)
LT

∣∣ = (1+ λ1r + λ2
1r

2
)
e−λ1r (5.6)

Ä
(A)
G

Ä
(E)
G

=
∣∣ EÄ(A)

G

∣∣∣∣ EÄ(E)
G

∣∣ = 1

3
|(1+ λ0r )e−λ0r − 8(1+ λ1r )e−λ1r | (5.7)

It is likely that the range of forces for the Yukawa type, in which additional
intermediate-range forces could be added to the Newtonian component without
being detected, would be 10 m< λ−1 < 1 km where experimental data are poorest
(Fujii, 1971; Long, 1974; Mikkelson and Newman, 1977). Takingλ−1

0 andλ−1
1 in

Eqs. (5.6) and (5.7) to be 1 km, we obtain

Ä
(A)
LT

Ä
(E)
LT

∼ 0,
Ä

(A)
G

Ä
(E)
G

∼ 0

We see from above results that the precessions of an orbiting gyroscope circling
the Earth predicted by higher-order gravitational theory are consistent with that in
general relativity.

For the case of an orbiting gyroscope circling a spinning neutron star with
radiusr0 = 1 km on an orbit with altitudeh = 9 km, we have

Ä
(A)
LT

Ä
(E)
LT

∼ 5× 10−3,
Ä

(A)
G

Ä
(E)
G

∼ 1.28× 10−3

Thus the effects of the additional forces on the precession are much less than that
of general relativity. If the ranges of additional forces were longer, or the radii of a
neutron star and a gyroscope orbit are less, their effects might be comparable with
(or larger than) the relativistic effect on the precessions of an orbiting gyroscope.
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